Copied to
clipboard

G = C422Dic7order 448 = 26·7

2nd semidirect product of C42 and Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C422Dic7, (C4×C28)⋊2C4, (Q8×C14)⋊2C4, (C2×Q8)⋊2Dic7, (C2×D4).9D14, C72(C423C4), C4.4D4.2D7, (C22×C14).16D4, C23.7(C7⋊D4), C23⋊Dic7.4C2, C14.23(C23⋊C4), C2.8(C23⋊Dic7), (D4×C14).172C22, C22.14(C23.D7), (C2×C28).8(C2×C4), (C2×C4).1(C2×Dic7), (C7×C4.4D4).9C2, (C2×C14).99(C22⋊C4), SmallGroup(448,98)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C422Dic7
C1C7C14C2×C14C22×C14D4×C14C23⋊Dic7 — C422Dic7
C7C14C2×C14C2×C28 — C422Dic7
C1C2C22C2×D4C4.4D4

Generators and relations for C422Dic7
 G = < a,b,c,d | a4=b4=c14=1, d2=c7, ab=ba, cac-1=a-1b2, dad-1=a-1b-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c-1 >

Subgroups: 364 in 70 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, Dic7, C28, C2×C14, C2×C14, C23⋊C4, C4.4D4, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C423C4, C23.D7, C4×C28, C7×C22⋊C4, D4×C14, Q8×C14, C23⋊Dic7, C7×C4.4D4, C422Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, Dic7, D14, C23⋊C4, C2×Dic7, C7⋊D4, C423C4, C23.D7, C23⋊Dic7, C422Dic7

Smallest permutation representation of C422Dic7
On 112 points
Generators in S112
(1 98)(3 86)(5 88)(7 90)(9 92)(11 94)(13 96)(16 72)(18 74)(20 76)(22 78)(24 80)(26 82)(28 84)(29 53 110 57)(30 54 111 58)(31 55 112 59)(32 56 99 60)(33 43 100 61)(34 44 101 62)(35 45 102 63)(36 46 103 64)(37 47 104 65)(38 48 105 66)(39 49 106 67)(40 50 107 68)(41 51 108 69)(42 52 109 70)
(1 76 98 20)(2 21 85 77)(3 78 86 22)(4 23 87 79)(5 80 88 24)(6 25 89 81)(7 82 90 26)(8 27 91 83)(9 84 92 28)(10 15 93 71)(11 72 94 16)(12 17 95 73)(13 74 96 18)(14 19 97 75)(29 53 110 57)(30 58 111 54)(31 55 112 59)(32 60 99 56)(33 43 100 61)(34 62 101 44)(35 45 102 63)(36 64 103 46)(37 47 104 65)(38 66 105 48)(39 49 106 67)(40 68 107 50)(41 51 108 69)(42 70 109 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 48 8 55)(2 47 9 54)(3 46 10 53)(4 45 11 52)(5 44 12 51)(6 43 13 50)(7 56 14 49)(15 29 22 36)(16 42 23 35)(17 41 24 34)(18 40 25 33)(19 39 26 32)(20 38 27 31)(21 37 28 30)(57 86 64 93)(58 85 65 92)(59 98 66 91)(60 97 67 90)(61 96 68 89)(62 95 69 88)(63 94 70 87)(71 110 78 103)(72 109 79 102)(73 108 80 101)(74 107 81 100)(75 106 82 99)(76 105 83 112)(77 104 84 111)

G:=sub<Sym(112)| (1,98)(3,86)(5,88)(7,90)(9,92)(11,94)(13,96)(16,72)(18,74)(20,76)(22,78)(24,80)(26,82)(28,84)(29,53,110,57)(30,54,111,58)(31,55,112,59)(32,56,99,60)(33,43,100,61)(34,44,101,62)(35,45,102,63)(36,46,103,64)(37,47,104,65)(38,48,105,66)(39,49,106,67)(40,50,107,68)(41,51,108,69)(42,52,109,70), (1,76,98,20)(2,21,85,77)(3,78,86,22)(4,23,87,79)(5,80,88,24)(6,25,89,81)(7,82,90,26)(8,27,91,83)(9,84,92,28)(10,15,93,71)(11,72,94,16)(12,17,95,73)(13,74,96,18)(14,19,97,75)(29,53,110,57)(30,58,111,54)(31,55,112,59)(32,60,99,56)(33,43,100,61)(34,62,101,44)(35,45,102,63)(36,64,103,46)(37,47,104,65)(38,66,105,48)(39,49,106,67)(40,68,107,50)(41,51,108,69)(42,70,109,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,48,8,55)(2,47,9,54)(3,46,10,53)(4,45,11,52)(5,44,12,51)(6,43,13,50)(7,56,14,49)(15,29,22,36)(16,42,23,35)(17,41,24,34)(18,40,25,33)(19,39,26,32)(20,38,27,31)(21,37,28,30)(57,86,64,93)(58,85,65,92)(59,98,66,91)(60,97,67,90)(61,96,68,89)(62,95,69,88)(63,94,70,87)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111)>;

G:=Group( (1,98)(3,86)(5,88)(7,90)(9,92)(11,94)(13,96)(16,72)(18,74)(20,76)(22,78)(24,80)(26,82)(28,84)(29,53,110,57)(30,54,111,58)(31,55,112,59)(32,56,99,60)(33,43,100,61)(34,44,101,62)(35,45,102,63)(36,46,103,64)(37,47,104,65)(38,48,105,66)(39,49,106,67)(40,50,107,68)(41,51,108,69)(42,52,109,70), (1,76,98,20)(2,21,85,77)(3,78,86,22)(4,23,87,79)(5,80,88,24)(6,25,89,81)(7,82,90,26)(8,27,91,83)(9,84,92,28)(10,15,93,71)(11,72,94,16)(12,17,95,73)(13,74,96,18)(14,19,97,75)(29,53,110,57)(30,58,111,54)(31,55,112,59)(32,60,99,56)(33,43,100,61)(34,62,101,44)(35,45,102,63)(36,64,103,46)(37,47,104,65)(38,66,105,48)(39,49,106,67)(40,68,107,50)(41,51,108,69)(42,70,109,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,48,8,55)(2,47,9,54)(3,46,10,53)(4,45,11,52)(5,44,12,51)(6,43,13,50)(7,56,14,49)(15,29,22,36)(16,42,23,35)(17,41,24,34)(18,40,25,33)(19,39,26,32)(20,38,27,31)(21,37,28,30)(57,86,64,93)(58,85,65,92)(59,98,66,91)(60,97,67,90)(61,96,68,89)(62,95,69,88)(63,94,70,87)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111) );

G=PermutationGroup([[(1,98),(3,86),(5,88),(7,90),(9,92),(11,94),(13,96),(16,72),(18,74),(20,76),(22,78),(24,80),(26,82),(28,84),(29,53,110,57),(30,54,111,58),(31,55,112,59),(32,56,99,60),(33,43,100,61),(34,44,101,62),(35,45,102,63),(36,46,103,64),(37,47,104,65),(38,48,105,66),(39,49,106,67),(40,50,107,68),(41,51,108,69),(42,52,109,70)], [(1,76,98,20),(2,21,85,77),(3,78,86,22),(4,23,87,79),(5,80,88,24),(6,25,89,81),(7,82,90,26),(8,27,91,83),(9,84,92,28),(10,15,93,71),(11,72,94,16),(12,17,95,73),(13,74,96,18),(14,19,97,75),(29,53,110,57),(30,58,111,54),(31,55,112,59),(32,60,99,56),(33,43,100,61),(34,62,101,44),(35,45,102,63),(36,64,103,46),(37,47,104,65),(38,66,105,48),(39,49,106,67),(40,68,107,50),(41,51,108,69),(42,70,109,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,48,8,55),(2,47,9,54),(3,46,10,53),(4,45,11,52),(5,44,12,51),(6,43,13,50),(7,56,14,49),(15,29,22,36),(16,42,23,35),(17,41,24,34),(18,40,25,33),(19,39,26,32),(20,38,27,31),(21,37,28,30),(57,86,64,93),(58,85,65,92),(59,98,66,91),(60,97,67,90),(61,96,68,89),(62,95,69,88),(63,94,70,87),(71,110,78,103),(72,109,79,102),(73,108,80,101),(74,107,81,100),(75,106,82,99),(76,105,83,112),(77,104,84,111)]])

55 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H7A7B7C14A···14I14J···14O28A···28R28S···28X
order122224444444477714···1414···1428···2828···28
size112444448565656562222···28···84···48···8

55 irreducible representations

dim111112222224444
type+++++-+-+
imageC1C2C2C4C4D4D7Dic7D14Dic7C7⋊D4C23⋊C4C423C4C23⋊Dic7C422Dic7
kernelC422Dic7C23⋊Dic7C7×C4.4D4C4×C28Q8×C14C22×C14C4.4D4C42C2×D4C2×Q8C23C14C7C2C1
# reps12122233331212612

Matrix representation of C422Dic7 in GL4(𝔽29) generated by

28000
0100
00170
00017
,
17000
01200
00170
00012
,
02000
20000
00016
00160
,
0010
0001
0100
1000
G:=sub<GL(4,GF(29))| [28,0,0,0,0,1,0,0,0,0,17,0,0,0,0,17],[17,0,0,0,0,12,0,0,0,0,17,0,0,0,0,12],[0,20,0,0,20,0,0,0,0,0,0,16,0,0,16,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;

C422Dic7 in GAP, Magma, Sage, TeX

C_4^2\rtimes_2{\rm Dic}_7
% in TeX

G:=Group("C4^2:2Dic7");
// GroupNames label

G:=SmallGroup(448,98);
// by ID

G=gap.SmallGroup(448,98);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,232,219,1571,570,297,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=1,d^2=c^7,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽